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Wedescribestatisticaltechniquesfor effectiveevaluationof large
virtual combinatoriallibraries (.1010 potentialcompounds).The
methodsdescribedare usedfor computationallyevaluatingtem-
plates (prioritization of candidate libraries for synthesisand
screening)andfor thedesignof individualcombinatoriallibraries
(e.g.,for a givendiversitysite,reagentscanbeselectedbasedon
theestimatedfrequencywith which theyappearin productsthat
passa computationalfilter). Thesestatisticalmethodsare pow-
erful becausetheyprovidea simplewayto estimatetheproperties
of the overall library without explicitly enumeratingall of the
possibleproducts.In addition, theyare fast and simple,and the
amountof samplingrequired to achievea desiredprecision is
calculable.In this article, wediscussthecomputationalmethods
thatallow randomproductselectionfroma combinatoriallibrary
and the statisticsinvolved in estimatingerrors from quantities
obtainedfromsuchsamples.Wethendescribethreeexamples:(1)
an estimateof averagemolecularweight for the severalbillion
possibleproductsin a four-componentUgi reaction,a quantity
that canbecalculatedexactlyfor comparison;(2) theprioritiza-
tion of four templatesfor combinatorialsynthesisusinga compu-
tational filter basedon four-point pharmacophores;and (3) se-
lectionof reagentsfor thefour-componentUgi reactionbasedon
their frequencyof occurrencein productsthat passa pharma-
cophorefilter. © 2000by ElsevierScienceInc.
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INTRODUCTION

Combinatorialchemicalsynthesisoffers the promiseof large
numbers,with a single syntheticstrategyroutinely providing
accessto millions of uniquecompounds.The potentialavail-
ability of millions or evenbillions of compoundsis particularly
appealingin the area of drug discovery, where good lead
candidatesarerare,1 andthechanceof finding a leadcandidate
is generallythoughtto increasewith thenumberof compounds
synthesizedand screened.However, large numberscan be a
burden.Associatedwith eachchemicalsynthesizedin a com-
binatorial library is the overheadof purification, analysis,bi-
ological assay,anddeconvolutionof potentialhits if mixtures
of compoundsarescreened.Theresourcesnecessarycanoffset
thebenefits,andit quickly becomesdesirableto limit andfocus
synthetic and screeningefforts. To this end, computational
modelshavehelpeddirect drug discoveryefforts using com-
binatorialsynthesis.2–5Suchmodelscanbeusedto filter a large
library, resulting in a smaller library that is enrichedfor a
desiredproperty.Theresultantsmallerlibrary is takenforward
to chemicalsynthesis,purification, and analysis,and finally
assayedagainstoneor moretargets.

Thecomputationalmethodsappliedto combinatoriallibrary
designarecloselyrelatedto methodsusedin searchingavirtual
databaseof compounds.In screeningapplications,librariesof
compounds,generatedfrom internal syntheticefforts or pur-
chasedfrom externalsources,arescreenedagainstnewly iden-
tified targets.Thesecollections are often large (105 to 106

compounds),andscreeningall of the compoundsmay not be
practical. Computationalmethodscan be employed at this
stageto filter thecompoundsthataretakenforward to screen-
ing. If activecompoundsarealreadyknown,thefilter cantake
the form of a similarity search,i.e., identificationof the com-
poundsin thecollectionthataremostchemicallysimilar to the
knownactives.6–8 A moregeneralapproachis to takeforward
a subsetof the collection that is highly diversewith the hope
that thechemicalinformationin thesubsetis sufficiently close
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to that of the entire collection so that no opportunitiesare
missed.3,9 Clusteringmethods,10–13 in whichchemicallysimilar
compoundsaregrouped,alsocanbeuseful,becausecorporate
collectionsoften consistof compoundsfrom previousdiscov-
ery efforts (againstdifferent targets)and,therefore,fall natu-
rally into clusters.Representativesfrom eachcluster can be
takenforward,and,whenhits areidentified,thenextscreening
round can be focusedon the other membersof the “active”
clusters.The importantpoint is that all thesemethodsapply
computationalfilters to the library. Eachcompoundis repre-
sentedon the computerand evaluatedusing algorithmsde-
signedto eliminateundesiredmolecules.

Computationalfilters, similar to thoseusedfor thesearching
of screeninglibraries,canbe appliedto combinatoriallibrary
design.Suchlibraries typically arederivedfrom a scaffold,a
set of chemicalreactions,and selectedlists of reagents.The
resultingproductscanberepresentedin silico andselectedfor
synthesisbasedon thecriteriadescribedearlier(i.e., similarity
to known actives,chemicallydiversefrom oneanother,etc.).
However, combinatorialsynthesisposesthe following addi-
tional constraint.To reducecostsand to simplify the overall
synthesis,the numberof reagentsat eachdiversity site should
bekept to a minimum,which may conflict with the selections
from the computationalfilter. Note that additionalcomplica-
tionsassociatedwith combinatorialmixturesarenot presentin
our designs,becauseour syntheticschemesresult in purified,
singlecompounds.This constraintcreatesan interestingopti-
mization problem:How can we maximizethe numberof de-
sired compounds(those that pass the computationalfilter),
while keeping the numberof reagentsto a minimum? This
problem has been addressedfor chemistrieswith relatively
smallpotentialproductspaces(,106 compounds)by methods
that enumeratethe completesetof productsandthenselecta
subsetthat optimizesthe characteristicsof the productswhile
maintainingtheconstraintsof combinatorialsynthesis.14,15But
what if thesetof possibleproductsis too largeto allow for the
completecomputationalexaminationof all possibleproducts?

Thisarticledescribeshowrandomstatisticalsamplingof the
possibleproductsin a combinatoriallibrary providesa simple
way to estimatethepropertiesof theoverall library without the
needto explicitly enumerateall of the library’s possibleprod-
ucts.This allows computationalfilters to assesscombinatorial
libraries that are vast (e.g.,.1010 possibleproducts).Use of
thesestatisticalestimatesallows us to evaluateand prioritize
different librariesthatarecandidatesfor synthesisandscreen-
ing. In addition,an extensionof this techniquefacilitatesse-
lectionof reagentsfor synthesisat a diversitysite,astheycan
be rankedby the estimatedfrequencywith which they appear
in productsthat passa computationalfilter (i.e., a “virtual
screen”).Thestatisticalmethodspresentedhavetheadvantage
that they are fast and simple, and the amount of sampling
requiredto achievea desiredprecisionis calculable.

We first discussthe software design that allows random
productselectionfrom acombinatoriallibrary andthestatistics
involved in estimatingerrors from quantitiesobtainedfrom
suchsamples.Wethendescribethreeexamples:(1) anestimate
of averagemolecularweight for the severalbillion possible
productsin the four-componentUgi reaction,a quantity that
canbecalculatedexactlyfor comparison;(2) theprioritization
of four templatesfor combinatorialsynthesisusinga compu-
tational filter basedon four-point pharmacophores;and (3)
selectionof monomersfor the four-componentUgi reaction

basedon their frequencyof occurrencein productsthatpassa
pharmacophorefilter.

METHODS

Virtual Combinatorial Libraries

Representationof moleculesin computer programsis now
commonplace:in two dimensions,moleculesarerepresentedas
networksof elementsandbonds;in threedimensions,coordi-
natesof atomicnuclei arestoredandthe relativepositionsof
atoms in a molecule are mostly determinedby force-field
approximationsto the interatomicforces.In either case,it is
impracticalto constructandstoreall possibleproductsfor large
combinatoriallibraries in computermemory. However, it is
possibleto representacombinatoriallibrary asasetof reagents
and reactions.A chemical reactionsimulation program(the
Cascader™)wasdevelopedinternallyto provideautomationin
the enumerationof combinatoriallibraries. Briefly, the Cas-
cader™takesreactantmolecules,reactiontransformations,and
synthesisschemesasinput.Thereactantmoleculesprovidethe
building blocksfor productenumeration.Reactiontransforma-
tions provide details about what combinationsof functional
groups will react, along with the atom transformationsfor
convertingcombinationsof reactantsinto products.The syn-
thesisschemes(“cascades”)describehowreactionsarechained
togetherto simulate a multistep (or multicomponent,“one-
pot”) synthesis.The reaction-basedproduct enumerational-
lows accessto a very largepopulationof products(millions to
billions), whichcannotbepracticallyenumerated,andprovides
an implicit way to store them. Insteadof storing the list of
moleculesthat comprisethe collection,we storea setof rules
andconstraintsfor generatingsuchmoleculesfrom the much
moreeasilystoredreactants.

Random Sampling of Products

The combinationof a cascadeand setsof reactantmolecules
definesa populationof virtual products,or a “virtual library.”
If eachset of reactantmoleculesis thoughtof as a list, each
combinationof reactants(oneper set) canbe thoughtof asa
coordinatein thevirtual library, in whicheachdimensionof the
coordinateis anindex into thecorrespondingreactantlist. The
Cascadercan enumeratespecific coordinatesof a virtual li-
brary, eachof which representsa particular combinationof
reactantmolecules that result in a product structure. This
provides a convenientmechanismfor fully enumeratingall
productsor samplinga subsetof productsfrom a specified
virtual library. If only uniqueproductsaredesired,a canonical
representationof eachproduct can be constructedand com-
paredto the growing list of previouslyseenproducts.

Thesecorelibrary enumerationalgorithmsform thebasisof
severalstand-alonetools that canproducearbitrarysubsetsof
uniqueproductsof specifiedsizes.They alsocanbe accessed
via an extensionmodulein a chemicalscriptingenvironment
basedonthePythonprogramminglanguageto provideasource
of molecular productsthat can be samplediteratively until
somearbitrary terminationcondition is met. In this case,the
terminationcondition of interestis a user-specifiedsampling
accuracy.
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Estimating Sampling Error

The reaction-basedproductenumerationprovidedby the Cas-
caderallows us to storeimplicitly a largepopulationof prod-
ucts. Although this populationis too large to enumerateex-
plicitly, any productcanbe readily constructedfrom a chosen
combinationof reagentsandtherulesfor combiningthem.By
storingourcollectionof moleculesin thisway,wecangenerate
a uniform randomsample(with or without replacement)and
use the proportionsmeasuredin the sampleto estimatethe
propertiesof the entire(implicit) collection.

Fortunately, the manner in which sample measurements
approximatethetotalpopulationeffectivelyis well understood.
We can, therefore,designour sampleto guaranteethat the
measuredproportionis within a given toleranceandprobabil-
ity. It has beenshown previously (see,for example,Hoeff-
ding16) that if we wish to measurea proportionto within an
absoluteerrorof 6x%, a sampleof sizek hasa probabilityof
giving an incorrectresultof no morethan17:

2e2kx2/2,000. (1)

For example,a sampleof size1,000is sufficient to guarantee
ameasurementthatfalls within a10%absoluteerrorof thetrue
value with a probability .98.5%.It is importantto note that
20% estimatedto an absoluteerror of 10% is a numberfrom
10%to 30%,not 18%to 22%.As long asthesampleis drawn
uniformly (and independently),this bound (Equation 1) is
correct, independentof the size of the total populationand
independentof the unknownproportion.

BecauseEquation1 isgeneral,it tendsto predictthata fairly
largesamplesizeis necessary.However,if we wereto incor-
poratedomainknowledge(suchasknown boundson the true
proportionand,to a lesserextent,thetotal populationsize),we
canprove that smallersamplessuffice. For this case,we can
usethe exactbinomial formula insteadof the Hoeffding esti-
mate.Whenour sampleis drawnwith replacement,the exact
oddsof successbecome:
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where N is the size of the original populationand p is the
(unknown)trueproportion(written asa percentage).As p will
not be known, a good approximationcan be obtained by
replacingtheunknownvalueof p with theworst-casevalueof
50%or with a user-suppliedbound.Also, theexactvalueof N
is not required,so any upperboundwill do.

For sampleswithout replacement(that is, sampleswith no
repeatedvalues),theboundsbecomeslightly tighter(especially
for smallN); however,theexplicit oddsof successagainarea
simple series.We have implementedeach of the methods
describedhere and use them, as appropriate,to design our
samples.For the more difficult problem of measuringvery
smallproportionsto a givenrelativeerror,seeMount.18 These
methodscanbe usedto makeinformedchoicesbetweenrare
events (one of which might be much more desirablethan
others).

Computational Filters

In two of theexamplesof randomsampling,we usecomputa-
tional filters constructedfrom pharmacophore-based3D whole

molecule descriptors.Pharmacophoredescriptionsof mole-
cules and their application to virtual library searchingand
designhave beendescribedelsewhere,19–21 andonly thedetails
pertainingto their use in evaluatingrandomsampleswill be
summarizedhere.Themajorcomponentof our 3D descriptors
is the “four-point pharmacophore,”which consistsof four
chemical featuresand the six interfeaturedistances,and a
chiral indicator. Standardfeature types (i.e., hydrogen-bond
acceptorsand donors, hydrophobes,negative and positive
charges,andaromaticgroups)wereidentifiedon moleculesby
substructurequery matchesas describedby others.22,23 The
potentialnumberof pairwisefeaturedistancesis limited to a
specific set of distancebins (e.g., interfeaturedistancesbe-
tween3.5 and 5 Å would map to a single distancebin). We
used 14 bins for the two- and three-point pharmacophore
distances,spanning1.6 to 13.2 Å, and eight bins for the
four-point pharmacophoredistances,spanningthe samedis-
tance.Thus, the “pharmacophorespace”(all possiblecombi-
nationsof two, three,and four features)is predeterminedby
interfeaturedistancebinsandthespecificsetof features.Sim-
ilar to Mason et al.,20 we use a “molecular signature,” a
bit-string wherethe presenceor absenceof eachof the two-,
three-,or four-pointpharmacophoresis recorded.This resulted
in a pharmacophoresignaturelengthof ;12 million bits.

Our computationalfilters consistof a specificsubsetof the
bits in the pharmacophoresignature(an ensemble)that is
associatedwith a desiredpropertyin a chemicalproduct(e.g.,
pharmacophoresthat are presentin biologically active mole-
cules). In the examplesthat follow, two different filters are
used. The first consistsof a randomly selectedset of 100
pharmacophoresfrom the ;12-million bit signature.The sec-
ondconsistedof anensembleof 62 pharmacophorescontained
in the conformationof NAPAP bound to Thrombin (1ETS
structurein the proteindatabank).24

To assesswhetheran individual moleculehas the desired
property(i.e., passesthecomputationalfilter), we generatethe
conformationalmodel for the moleculesusing an in-house
programCONAN (CI onformationalAI nalysis by intersection)
describedin greaterdetailelsewhere.25,26Thenall two-, three-,
and four-point pharmacophoresthat are presentin the mole-
cule’s conformersare recordedas the molecule’spharmaco-
phoresignature.Themoleculepassesthecomputationalfilter if
its signaturecontainsa specified number of the pharmaco-
phoresin the ensemble.

It is importantto point out that thesecomputationalfilters
were generatedfor purposesof demonstratingthe sampling
methodsrather than constructinga predictive computational
modelfor biologicalactivity. Thoseinterestedin theconstruc-
tion of pharmacophoreensemblesgeneratedfrom activity data
for a particularbiological targetshould refer to the work of
Bradleyet al.26

Applications of Random Sampling
Physical property estimation Thesimplestapplicationof

randomsamplingis estimatingtheaveragephysicalproperties
of the productsin a combinatorial library. Each compound
chosenis constructedin silico, andits propertiesarecalculated.
As thecompoundsaresampledsequentially,runningaverages
of properties are computed and convergencecriteria are
checked.Whenthe estimatederrors forthe given samplesize
are acceptably small, sampling is terminated. Molecular

337J. Mol. GraphicsMod., 2000,Vol. 18, August–October



weight,calculatedoctanol/waterpartitioncoefficient,andnum-
berof rotatablebondsareexamplesof physicalpropertiesthat
canbe estimatedandusedto comparecombinatoriallibraries.
Theseproperties,althoughnot well correlatedwith biological
activity, are useful in determiningwhich libraries follow ob-
servedpropertiesin known drugs.27,28

Template evaluation A morechallengingapplicationfor
randomsamplingis to usethesampledcompoundsto estimate
what fraction of a combinatorial library will pass a more
complexcomputationalfilter (describedearlier).After a sam-
pled product is synthesizedon the computer,its low-energy
conformationsdetermined,and its pharmacophoredescriptor
constructed,a scoreis assignedto the productbasedon the
numberof pharmacophoresit hasin commonwith thosein the
virtual filter. As eachrandomlysampledproductin thevirtual
combinatoriallibrary is sampled,a runningaverageof scoresis
kept andan overall “passrate” (i.e., fraction of productsthat
passsome score threshold)is computed.Libraries then are
comparedbasedon their passrates.The higher the passrate,
themorelikely thelibrary is ableto provideproductsthatpass
the computationalfilter. We useda pharmacophorefilter of
500 randomlyselectedpharmacophores.To passthe filter, a
compoundhadto have.100of thesepharmacophorespresent
in its signature.

Monomer selection Randomsamplingtechniquescanbe
extendedto facilitatecombinatoriallibrary designfor synthesis
onasingletemplate.Oftencombinatorialchemistriesinvolvea
singlechemicalscaffold,or template,onwhichpendantgroups
can be attachedto “diversity sites” using various synthetic
strategies.Eachdiversity site hasa restrictedsetof chemicals
thatareappropriate,usuallybecausetheymusthavea reactive
chemicalmoiety (e.g.,if a templatewith anamineparticipates
in an amide bond formation, the reagentmust be anacid).
Nevertheless,eachreagentlist for a diversitysitecanbequite
large(hundredsor thousandsof compounds),andit is desirable
to limit considerationto thosemonomersthataremorelikely to
bepresentin “successful”(i.e.,modelmatching)products.This
canbe accomplishedusinga techniquecalled“lockdown”.

In randomsamplingwith “lockdown,” productsare gener-
ateduntil thereareenoughof themto gatherstatisticson the
monomersat the different diversity sites.At that point, one
diversitysiteis selected,andeachpossiblemonomerat thatsite
is evaluatedbasedon its prevalencein productsthat passthe
virtual filter. Thus,eachmonomerhasa “successrate” that is
usedto rank the monomerlist. In this example,successwas
definedaspassingathresholdof between30to 40bits from the
filter of 63 pharmacophorebits from a thrombin-inhibitor(de-
scribedin the Methods).

Monomersthatareseldomfound in successfulproductsare
removedfrom the initial reagentlist for that diversity site,
leavingonly thosereagentswhoseproductshada high success
rate.This diversitysitehasthenbeen“locked down,” i.e.,only
a subsetof the original reagentlist remains.The processthen
is repeatedfor a seconddiversity site, only this time, the
potentialproductspaceis reducedby the fraction of reagents
that werepurgedfrom the first lock-down.

Eachsuccessivelockdownresultsin a smallervirtual prod-
uct spacethatcontainsa higherfractionof successfulproducts
than were presentbeforethe lockdown took place.After the
last lockdown, we are left with a sublibrary that has a high
percentageof productsthatpassthevirtual filter andthatobey
the constraintsof matrix combinatorialsynthesis.The lock-
down can be carriedout in a way that yields a library that,
althoughstill too large to take forward to combinatorialsyn-
thesis,canbe fully enumeratedon the computer.Oncethis is
the case,otheroptimizationmethodscanbe appliedto design
an even smaller, synthetically practical, combinatorial li-
brary.14,15,29,30

RESULTS

Example 1: Estimating Physical Properties:
Molecular Weight

Thefour-componentUgi reaction31 (Figure1) is a goodexam-
ple of a reaction that can be usedto generatea very large
combinatorial library. Computationalanalysis of the entire
library, which in this examplehas ;13 3 109 products,is
impractical.However,its propertiescan be estimatedfrom a
randomsamplingof its products.The molecularweight is an
exampleof such a property.Becausethe averagemolecular
weight of the productsis the sum of the averagemolecular
weight of the reactants(minusthe weight of the elementsthat
are lost in the reaction),we have anexact solution for the
averagemolecularweightof the;13 3 109 products.Figure2
showstheestimateof this quantitybasedon randomsampling
of products.An averagemolecularweightcalculatedfrom only
600 productsis within 0.5 amu of the actual value of 615.
Moreover,the error in the estimateis easilycalculatedso that
the numberof samplesnecessaryto obtain a given error is
known.

Molecularweightwaschosenbecauseits valuefor theentire
library wasreadily calculable.Otherphysicalproperties,such
as the numberof rotatablebondsor the calculatedoctanol/
water partition coefficient, could be calculated using this
method.The resultsfrom a computationalassessment(e.g.,a
scoreindicatinghow well a productmatchesa computational

Figure 1. Four-componentUgi reaction.For thegivennumberof isocyanides,aldehydes,amines,andcarboxylicacids,there
are (theoretically)morethan 13 billion products.
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model)of eachsampledproductcanbetheestimatedquantity,
as is the casein the following examples.

Example 2: Template Evaluation

In this example,we rankorderchemistriesbasedon theability
of their products to passa computationalfilter. Randomly
chosenproductsfrom eachchemistrycanbe evaluatedandan
estimateof an overall “passrate” canbe obtained.Combina-
torial libraries with the bestpassrateswould receivepriority
for chemicalsynthesisor would be subjectto more detailed
computationalanalysis.

As an exampleof this, we chosefour librarieswhoseprod-
uctsdiffer only by thechirality of thetemplatethatdisplaysthe
monomers(Figure3). Eachlibrary contained1,280compounds
built arounda chiral cyclopentanetemplate.The productsin
eachlibrary weresampledandscoredagainstapharmacophore
filter, asdescribedin the Methods.

The scoreof a moleculeis the fraction of the pharmacoph-
oresin theensemblefilter thatare containedin themolecule’s
pharmacophoredescriptor(a similar procedureis describedin
greaterdetail by others,20,26 althoughin our case,eachmole-
culeis scoredindividually by its ability to presentpharmacoph-
oresthatare containedin theensemble).If thescoreis greater
than an establishedthreshold,the molecule is a “hit.” The
fraction of sampledmoleculesin a library that passesthe
thresholdis the estimateof the library’s hit rate.

The resultsfor the estimatedhit ratesfor the four libraries
areshownin Figure4. As seenin Figure4, therelativeranking
of the librariesis quickly established.After fewer than10%of
the productsof the libraries have beensampled,the libraries
couldbeprioritizedfor furtheranalysisor synthesis.Thus,very
rapidlibrary comparisonscanbemadefrom randomlysampled
productsof the virtual libraries.

Of course,four libraries that consistof only 1,280 com-
poundscouldbeprioritizedthroughexplicit enumerationof all
the compoundsin the virtual libraries ratherthan by random
sampling.A more practicalexamplecan be drawn from the
templateevaluationandprioritizationin oneof our therapeutic
projects.In this project,a pharmacophoremodelwasderived
from knownactivity data.An ensembleof 50 pharmacophores
wasidentifiedthatwasableto distinguishactivefrom inactive

molecules.Thesepharmacophoreswereusedto scoreproducts
from virtual libraries.Approximately70 templateswere pro-
posedfor synthesis,with eachconsistingof .250,000possible
chemicalproducts.Eachchemistrywasevaluatedfrom a ran-
domsampleof ;5,000of its products.A thresholdof 60%was
establishedfor a compoundto be model matching.With this
threshold,sevenof the chemistriescontained.1% model-
matching compoundsand three contained .10% model-
matchingcompounds.Thus,threechemistriesweretakenfor-
wardto synthesisbasedon this evaluation.This morepractical
exampleshowshow chemistriescanbe prioritized from eval-
uationof a small fraction (in this case;2%) of their possible
products.

Figure 3. Four stereoisomerictemplatesand the typesof
monomerspossibleat each of three diversity sites. The
diastereomerproductsweresampledrandomlyand scored
to prioritize eachtemplatefor chemicalsynthesis.The re-
sultsof theevaluationare shownin Figure 4.

Figure 2. Estimateof the average
molecular weight of Ugi reaction
productsas calculatedby random
sampling of the products. Shown
are theestimatesbasedon thenum-
ber of sampleswith the associated
estimated error (calculated from
Equation 2). The solid horizontal
line is the exactresult.
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Example 3: Monomer Selection Using
Combinatorial “Lockdown”

After templatesandchemistrieshave beenidentifiedascandi-
datesfor combinatorialsynthesis,thetaskof selectingreagents
remains.Dependingon the templateand the reaction,each
diversity position may permit the use of hundredsor even
thousandsof possiblereagents.Limits on resourcesfor synthe-
sis of combinatoriallibrariesrequirethat the potentialreagent
lists be trimmed significantly. Randomsamplingof a virtual
library could identify individual compoundsthat are model
matching.Such“cherry-picked”moleculesoftenareincompat-
ible with matrix synthesis.Random sampling followed by
“lockdown” asdescribedearlierprovidesanefficient meansto

identify a subsetof the possibleproductsthat areboth model
matchingandconsistentwith constraintsof matrix synthesis.

We will againusethe four-componentUgi reaction(Figure
1) to illustrate library design using random sampling with
lockdown. The Ugi reaction is a one-pot reaction and not
subjectto the constraintsof efficient matrix synthesis.Never-
theless,if one seeksto minimize the number of reagents
orderedwhile maintaininga high densityof model-matching
compounds,the requirementsare identical to thoseof matrix
synthesis:Givensetsof reagents,whichsubsetsof thelistswill
result in a high densityof model-matchingproducts?

In this example,we usethe lockdown methodto trim the
numberof productsfrom .1010 to ,105. In the full virtual
library, which has reagentlist sizes of 9 isocyanides,461
aldehydes,2,285amines,and1,372acidsfor the R1, R2, R3,
andR4 positions,respectively,the fractionof modelmatching
compoundsis ,0.02%.After lockdown,thereagentslist sizes
have beentrimmedto 9, 19, 20,and19, andthe final density
of model matchingcompounds(i.e., thosethat contain40 of
the 50 preferredpharmacophores)is 100%.

Table1 showsthenumberof reactantspresentin thevirtual
library at eachstageof thelockdown.It is possibleto limit the
amountof samplingnecessaryby a judiciousselectionof the
order of the reagentslocked down. By selectingthe shortest
monomerlist for the initial lockdown,the smallestnumberof
productswill haveto besampledto achievethedesiredstatis-
tical accuracy(comparedto thenumberof samplesrequiredif
a largerlist werechosenfor the initial lockdown).In this way,
when the statisticallymore challenginglarger lists are exam-
ined, the virtual library sizehasalreadybeengreatlyreduced,
making the searcheasier.In the first step,approximately400
aldehydesare filtered out. For each aldehyde,the sampled
productsthat containit areable to meetthe requirementsfor
success(matching30 of the50 pharmacophoresin themodel)
morethan30%of thetime. In thenextstageof lockdown,only
80aldehydesareallowedto participatein therandomsampling
of products.Basedon ;40,000 random samplesfrom this
reducedproductspace,theacidlist is reducedby a factorof 20
through applicationof the samefilter with a more stringent
cut-off of 36 of 50.

At each stage of the lockdown, the size of the library
decreasesandthequalityof theproductsincreases.Thisallows
usto adjustthefilters to maketherequirementsmorestringent.
The thresholdfor the fractionof productsthatpassthecut-off

Figure 4. Cumulativepassrates for the four chemistries
shownin Figure 3. Each randomlysampledproduct is a
stereoisomerof thoseon the other threetemplates,so only
the stereochemistryof thetemplatediffers at eachsample.
Thefirst templateclearly containsmore productsthat pass
the virtual filter and is, therefore,the leading candidate
templatefor chemicalsynthesis.

Table 1. Stages of combinatorial lockdown

Lockdown
stage

Monomer
selected R1 R2 R3 R4

Possible
products

Products
sampled

Filter
passratea

Threshold
for filter

1 R2 9 461 2,285 1,372 13,007,197,980 36,000 0.306 0.20 30
2 R4 9 80 2,285 1,372 2,257,214,400 40,000 0.306 0.16 36
3 R3 9 80 2,285 69 113,518,800 79,000 0.306 0.08 38
4 R2 9 80 106 69 5,266,080 7,000 0.306 0.13 40
5 R3 9 19 106 69 1,250,694 14,000 0.306 0.06 40
6 R4 9 19 20 69 235,980 9,000 0.866 0.05 40
Final R1/R2/R3/R4 9 19 20 19 64,980 64,980 1.00 40

a Errorscalculatedfrom Equation2.
SeealsoFigure1 for explanationof R1–R4.
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is raised,asis thenumberof pharmacophoresthatmustbehit
by a successfulproduct. Thelast stageof filtering createsan
optimallydensesetof modelmatchingcompoundsbasedonan
explicit enumerationof all theproductsin thevirtual library.30

DISCUSSION

We haveshownhow randomsamplingis a very practicaland
useful tool in the computationalevaluationof hugecombina-
torial libraries. It provides an efficient meansto prioritize
combinatorialchemistrystrategiesand can be usedto select
reagentsfor combinatorialsynthesison a singletemplate.

The main advantageof library designusing randomsam-
pling over other designmethodsderives from the reaction-
basedrepresentationof proposedchemicalsyntheticstrategies.
Becauseof this, virtual productscan be randomly chosen,
constructed,andcomputationallyevaluatedwithout theneedto
fully enumerateall possibleproducts.Thus, conclusionsare
basedonsamplesthatrepresentthefull chemicalproductspace
availableto the chemicalsynthesisat a small fraction of the
computationalcostthatwouldberequiredto evaluatetheentire
library of products.

In our analysisof randomlysampledcompoundsfrom large
virtual combinatoriallibraries, we have concentratedon the
estimatednumberof compoundsthatpasssomecomputational
filter and, as a result, did not concern ourselveswith the
estimatedshapeof the distribution.One could easily usethe
randomlysampledcompoundsto estimateother quantitiesof
the distribution of the entire combinatorial library, such as
higher momentsor propertiesof the tail of the distribution
usingextremevaluetheory.32

The resultsfrom randomsamplingareapproximations,but
the strengthof this methodis that the errorsassociatedwith
theseestimatescanthemselvesbeestimatedbasedonstatistical
theory. This permits calculation of the number of samples
required to achieve a given accuracy in the results. Such
estimatesarecritical whendeterminingthe necessarycompu-
tational resourcesand time, and this ability is becomingin-
creasinglyimportantas computationalmethodologiesare in-
corporated into mainstream combinatorial production
pipelines.

A more novel applicationof randomsamplingis the com-
binatorial “lockdown” approach,which facilitatesreagentse-
lection for specific combinatorialreaction schemesthat are
basedon a single chemicaltemplateor scaffold. By succes-
sively trimming away reagentsthat are seldomfound in suc-
cessfulproducts,this techniqueidentifies regionsof product
spacethat havea high densityof desirableproductsandobey
the constraintsof matrix synthesis.In the Ugi reactionexam-
ple, the numberof productswas reducedby five ordersof
magnitudewithin a handfulof CPU days.

The lockdownmethodis flexible aswell. Thestringencyof
the filters appliedto the randomlysampledcompoundscanbe
modulatedat eachstageof the lockdownasthe quality of the
survivingproductsin thevirtual library improves.In addition,
the processcanbe more iterative.Onceall the monomerlists
have beenlockeddown,theconstraintsonanyof themonomer
positionscan be relaxed,and the lockdown at that monomer
site canbe repeatedto seeif the chosenreagentlists change.
That would provide a more robust,self-consistentlockdown
procedure.

However,the lockdownmethodhassomelimitations. It is

anapproximationto a full evaluationof theentirelibrary, and
thereis no guaranteethat the final monomerschosenresult in
thebestsetof products.Moreover,eventhoughtheevaluation
is basedon fully constructedproducts,thereis the possibility
that the bestmonomersmatchthe computationalmodel (i.e.,
passthevirtual filter) by themselves.If this werethecase,the
resultwould beequivalentto independentcomputationaleval-
uationof the reagents.However,the randomlysampledprod-
uctsthat satisfythecomputationalmodelareknown,andthey
canbeexaminedto determinehow theysatisfythemodel.For
thepharmacophoremodelswe used,we havefoundthatwhole
products,ratherthan individual sidechains,arenecessaryfor
success.In the Ugi lockdown example,partial productswere
constructedfor eachreagentlist (by reactingtheotherdiversity
siteswith a minimally small reagent).Only 2% of thesecom-
poundscontainedover 30 of the 62 pharmacophoresin the
ensemblefilter, andnonecontainedover40. Thus,theenrich-
ment shown in Table 1 could not have beenobtainedfrom
analysisof the sidechainsalone.

Themethodsandapplicationsthatwe havepresentedin this
article illustrate the utility of randomsamplingin the evalua-
tion anddesignof very largecombinatoriallibraries.*Wehave
consideredprimarily computationalfilters based on three-
dimensionaldescriptors,althoughothermetricsfor evaluating
products,suchas two- or three-dimensionaldiversity or even
scoresfrom dockingcalculations,couldbeusedaswell. How-
ever,three-dimensionaldescriptorsrequirea completeconfor-
mationalmodel of eachcompoundanalyzedand,as a result,
areamongthe mostcomputationallyambitiouscalculationsin
combinatoriallibrary design.Thus, the statistical techniques
outlinedhereallow theapplicationof verycomplicatedmodels
to extremelylargecombinatoriallibraries.
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